2019

CHEMISTRY

(Honours)

Paper: CEMH-DC-T1

(Organic Chemistry)

[CBCS]

Full Marks: 25

Time: Two Hours

The figures in the margin indicate full marks.

1. Answer any five questions from the following:

5×1=5

(a) In the following groups

The order of leaving group ability is -

(i)
$$I > II > III > IV$$

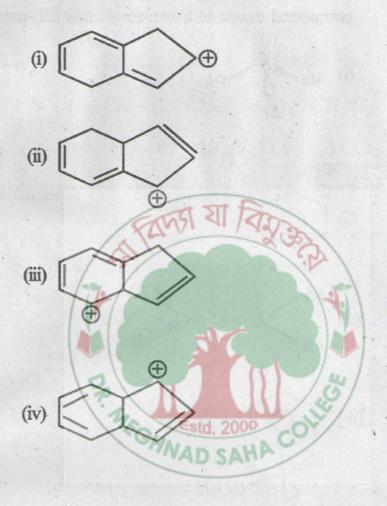
(ii)
$$IV > III > I > II$$

(iii)
$$III > II > I > IV$$

(iv)
$$II > III > IV > I$$

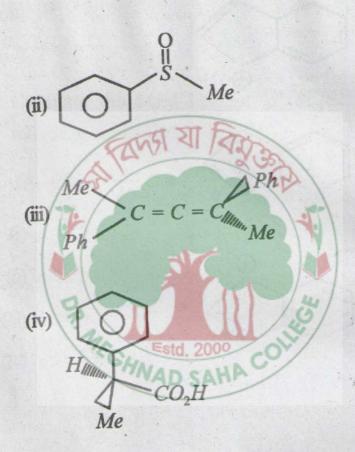
P.T.O.

- (b) The number of racemic forms of molecules having 'n' different chiral carbon centre is
 - (i) 2n
 - (ii) 2^n
 - (iii) $2^{(n-1)}$
 - (iv) $2^{(n+1)}$
- (c) Compare the bond lengths 'a' & 'b' in the following compound:

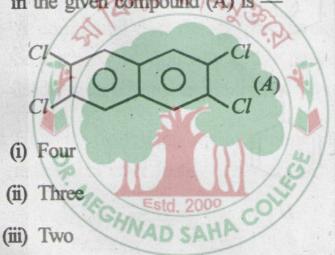

$$H - C \equiv C \xrightarrow{`a'} C \equiv C \xrightarrow{`b'} CH_3$$

- (i) a = b
- (ii) a > b
- (iii) b > a

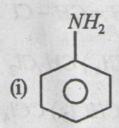
Estd. 2

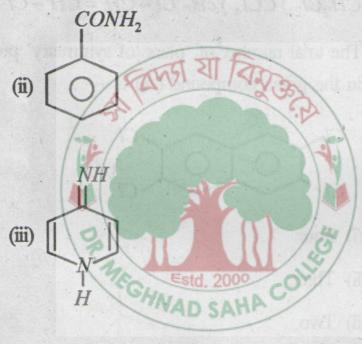

(iv) a>>>b

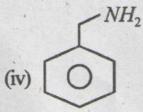
(d) Which carbocation is the most stabilised?



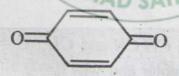
(e) Among the following, which optically active compound exists as a non-resolvable (dl)-pair?


(i)
$$Me^{-mnN}Ph$$




- (f) The dipole moments of halocompounds are in the order:
- (i) $CHCl_3 \rangle CCl_4 \rangle CH_2Cl_2 \rangle cis-Cl-CH = CH-Cl$
- (ii) $cis-Cl-CH=CH-Cl \ CHCl_3 \ CCl_4 \ CH_2Cl_2$
- (iii) $cis-Cl-CH=CH-Cl \ CH_2Cl_2 \ CHCl_3 \ CCl_4$
- (iv) $CHCl_3 \rangle CH_2Cl_2 \rangle CCl_4 \rangle cis-Cl-CH = CH-Cl$
 - (g) The total number of 'plane of symmetry' present in the given compound (A) is —

(h) Among the following compounds which one is the most reactive towards dilute HCl?


2. Answer any four questions:

4×2=8

- (a) Explain the order of nucleophilicity of the following nucleophiles applying FMO approach; HO, CH_3 , NH_2 .
- (b) How many different stereoisomers are possible for the following compound? Draw their structures with suitable descriptors.

$$Cl-CH = CH-CH(Cl)-CH = CH-Cl$$

- (c) A compound containing 'pseudo-asymmetric center' may be optically active or inactive —
 Justify with suitable examples.
- (d) How the following hydroquinone can act as radical inhibitor? Justify. 2000

(e) Write down the final product in the following reaction:

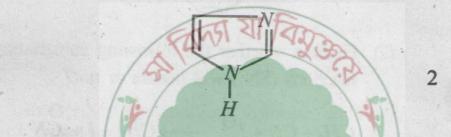
$$Me_3C - CH_2 - Br \xrightarrow{HO^{\Theta}/H_2O}$$
?

- (f) Oxalic acid has zero dipole moment in the gas phase Explain.
- (g) Predict the major products in the following reaction with mechanism:

$$N_3$$
 $hv \rightarrow A$ tricyclic product.

- (h) Cyclooctatetraene undergoes electrophilic attack by proton very easily — Explain.
- 3. Answer any two questions:

6×2=12


(a) (i) Between ethylene and 1, 3-butadiene – which one is more reactive towards electrophile? Explain in the light of FMO approach.

2

- (ii) Between CH₃CN and CH₃NC— which one is more polar and why?
- (iii) What happens when:

$$\begin{array}{ccc}
& & CO_2^{\ominus} & & \\
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\$$

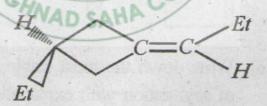
- (b) (i) Applying FMO approach prove that benzene is more stable than 1, 3, 5-hexatriene.
 - (ii) From the symmetry operation point of view what is the basic difference between asymmetric and disymmetric molecules? 1
 - (iii) In the following compound which 'N' atom is more basic and why?

(c) (i) Among the following two ionic species which one is more stable and why?

- (ii) Write down the most stable cannonical form of acyl cation with explanation.
- (iii) A sample of 2-methyl-1-butanol has an observed specific rotation $[\alpha]_D^{25} = (+)1.151^\circ$. Calculate the enantiomeric excess of the sample.

What is the actual stereoisomeric composition of the mixture?

(The specific rotation of the pure enantiomer is (+) 5.756°).


(d) (i) Why the following molecule is highly polar in nature?

(ii) Explain whether the following substitution reactions (SN²) will occurs or not? 2

$$CH_3 - CN + I^{\Theta} \longrightarrow CH_3 - I + \stackrel{\Theta}{C}N$$

 $CH_3 - N_3 + I^{\Theta} \longrightarrow CH_3 - I + N_3^{\Theta}$

(iii) Consider the following molecule —

Point out the stereoisomers. How many of them are planar or nonplanar? How can you verify that they are stereoisomers?