2019

CHEMISTRY

(Honours)

Paper: CEMH-DC-T2

(Physical)

[CBCS]

Full Marks: 25

Time : Two Hours

The figures in the margin indicate full marks.

Group - A

1. Answer any five questions:

1×5=5

- (a) At 298K the rate constant of a reaction is $1.6 \times 10^{-6} s^{-1}$. If the activation energy of the reaction is zero then the rate constant at 308K is—
 - (i) 0 s⁻¹
 - (ii) $1.6 \times 10^{-6} \, \text{s}^{-1}$
 - (iii) $3.2 \times 10^{-6} \, \text{s}^{-1}$
 - (iv) $4.8 \times 10^{-6} \, \text{s}^{-1}$

- (b) If $\left(\frac{ab}{v^2}\right)$ is negligible, the second virial coefficient 'B' in virial equation is
 - (i) $\left(b \frac{a}{RT}\right)$
 - (ii) $\left(b + \frac{a}{RT}\right)$
 - (iii) $\left(b + \frac{a}{RTV}\right)$ (iv) $\left(b \frac{a}{RTV}\right)$
- (c) For the reactions:

 $CH_4(g) \longrightarrow C(g) + 4H(g)$; $\Delta H = x_1$ and

$$C_2H_6(g) \longrightarrow 2C(g) + 6H(g); \Delta H = x_2$$

then bond energy of C - C bond is,

- (i) $x_1 x_2$
- (ii) $x_2 x_1$
- (iii) $x_2 + 1.5x_1$
- (iv) $x_2 1.5x_1$

- (d) For $A \rightarrow B$, $\Delta H = 4$ kcal.mol⁻¹, $\Delta S = 11$ cal. k^{-1} .mol⁻¹. At what temperature, the reaction would be spontaneous?
 - (i) 400K
 - (ii) 300K
 - (iii) 500K
 - (iv) None of these
 - (e) Which is not an equation of state?

(i)
$$\left(\frac{\partial H}{\partial P}\right)_T = V - T \left(\frac{\partial V}{\partial T}\right)_P$$

(ii)
$$\left(\frac{\partial U}{\partial V}\right)_T = T\left(\frac{\partial P}{\partial T}\right)_V - P$$

- (iii) PV = RT
- (iv) $PV^{\gamma} = K$ Estd 2000
- (f) For a given $[E]_0$, enzyme concentration and low values of $[S]_0$, substrate concentration, the rate of formation of product is proportional to
 - (i) $[E]_0$
 - (ii) Independent of [S]₀
 - (iii) Reached a maximum velocity
 - (iv) [S]₀

P.T.O.

(g) The Maxwell Relation for the equation dU = TdS - PdV, is,

(i)
$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$$

(ii)
$$\left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial S}{\partial P}\right)_T$$

(iii)
$$\left(\frac{\partial T}{\partial V}\right)_S = -\left(\frac{\partial P}{\partial S}\right)_V$$

(iv)
$$\left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P$$

- (h) Carnot cycle is applicable for,
 - (i) Ideal gas
 - (ii) Gas-oil
 - (iii) Real gas NAD SAHA
 - (iv) All substances
- 2. Answer any four questions:

2×4=8

(a) State the half life method for the determination of order of a reaction.

- (b) Plot $\frac{dN_c}{Ndc}$ vs. c at (i) T = Ok. and (ii) $T = \infty K$ (symbols have their usual significance).
- (c) A first order reaction never completes Justify.
- (d) Show that a van der Waals' gas behaves ideally at high temperature and low pressure.
- (e) How much heat is necessary to convert 0.5kg of ice at $0^{\circ}C$ to water vapour at $100^{\circ}C$? Given $\Delta H_{fusion} = 80 \text{ keal.kg}^{-1}$, $\Delta H_{vap} = 540 \text{ kcal.kg}^{-1}$, and heat capacity = 1.00 kcal.k $^{-1}$.kg⁻¹.
- (f) Show that $C_P C_V = T \left(\frac{\partial P}{\partial T} \right)_V \left(\frac{\partial V}{\partial T} \right)_P$
- (g) Find the value of $\int e^{-x} dx$ using gamma function.
- (h) Show that for an ideal gas

$$\left(\frac{\partial P}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_P \left(\frac{\partial T}{\partial P}\right)_V = -1$$

3. Answer any two questions:

 $6 \times 2 = 12$

- (a) (i) For the reversible adiabatic expansion of an ideal gas, show that PV^{γ} = constant.
 - (ii) Two moles of an ideal monoatomic gas is heated at constant pressure from 27°C to 127°C. Calculate work done (w), heat change (q), internal energy change (ΔU), change in enthalpy (ΔH) of the system in SI unit.
- (b) (i) Show that mixing of two ideal gases is always spontaneous. Also show that entropy change (ΔS) will be maximum when the gases are mixed in equimolar ratio.
 - (ii) One mole of ice at 0°C is converted to vapour at 100°C. Determine the entropy change (ΔS) of the process in SI unit. Given $L_{fis} = 334.88^{\circ} \text{J.gm}^{-1}$, $L_{vap} = 2247.9$ J.gm⁻¹, S = 4.186 J.gm⁻¹.k⁻¹. 3+3=6
- (c) A substrate is simultaneously catalysed by H^+ and OH^- ions. The reaction in 1st order with restpect to the substrate concentration, $[H^+]$ and $[OH^-]$.
 - (i) Depict the rate equation for the reaction.
 - (ii) Mention the overall order of the reaction.

(iii) Show that the rate is minimum when

$$\left[H^{+} \right] = \left[\frac{k_{OH^{-}}}{k_{H^{+}}} \cdot k_{W} \right]^{\frac{1}{2}}$$
 1+1+4=6

- (d) (i) Arrive at the adiabatic reversible T-V relationship.
 - (ii) Show that $C_P C_V = \frac{\alpha^2 VT}{\beta}$ where

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P \text{ and } \beta = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T$$

(iii) For the reaction : $\frac{1}{2}N_2 + \frac{3}{2}H_2 = 2NH_3$,

 $\Delta U(298K) = -43 \text{ kJ/mol}$. Find ΔH at 298 K assuming ideal behaviour. 2+2+2=6