UG/2nd Sem/H/20 (CBCS)

2020

MATHEMATICS (Honours)

Paper: MTMH-DC-3
[CBCS]

Full Marks: 32 Time: Two Hours

The figures in the margin indicate full marks.

Notations and symbols have their usual meanings.

Group - A (4 Marks)

1. Answer any four questions:

 $1 \times 4 = 4$

- (a) State the Archimedean property of real numbers.
- (b) Test whether the set $S = \{(x, y) \in \mathbb{R} : x^2 + y^2 < 1\}$ is closed or not.
- (c) Find one limit point of the sequence $\{(-1)^n\}$.
- (d) Is the series $\sum_{n=1}^{\infty} e^{\frac{1}{n}}$ convergent? Justify.
- (e) Give an example of a function f which is nowhere continuous but |f| is continuous everywhere.
- (f) Let I be a non-trivial interval and $f: I \to \mathbb{R}$ be a differentiable function. State under what condition f is increasing on I.
- (g) Reduce Rolle's theorem from Lagrange's mean value theorem.

Page: 1 of 3

Group - B

(10 Marks)

Answer any two questions.

 $5 \times 2 = 10$

- 2. Let $f: A \to \mathbb{R}$, $A \subseteq \mathbb{R}$, be a function. Prove that f is continuous at a point $c \in A$ if and only if for all sequences $\{a_n\}$ from A with $\lim_{n \to \infty} a_n = c$, we have that $\lim_{n \to \infty} f(a_n) = f(c)$.
- 3. (a) If f(0) = f'(0) = 0 and f'(x) exists in $0 \le x \le h$, then prove that $f(h) = \frac{1}{2}h^2f''(c)$, 0 < c < h.
 - (b) Show that f(x) = [x], where [x] is the greatest integer function, has a jump discontinuity at each integral value of x, the height being 1.
- 4. (a) Let $f:[a,b] \to \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). If f'(x)=0 for all $x \in (a,b)$, then prove by using the mean value theorem that f is constant on [a,b].
 - (b) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^2}{n!}$.
- 5. (a) State Taylor's theorem with Cauchy's form of remainder.
 - (b) Prove that the equation $e^{-x} + 2 = x$ has at least one real solution. 2+3

Group - C

(18 Marks)

Answer any *two* questions.

 $9 \times 2 = 18$

- 6. (a) If $S = \{\frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N}\}$, then
 - (i) show that 0 is a limit point of S.

- (ii) show that $\frac{1}{k}$ is a limit point of S for all $k \in \mathbb{N}$,
- (iii) find S' (the derived set of S). 1+2+2
- (b) Test the convergence of the series

$$\frac{1}{2^2 \log 2} - \frac{1}{3^2 \log 3} + \frac{1}{4^2 \log 4} - \cdots.$$

4

- 7. (a) If $\{x_n\}$ is a Cauchy sequence in $S \subset \mathbb{R}$ and $f: S \to \mathbb{R}$ is uniformly continuous function, then show that the sequence $\{f(x_n)\}$ is a Cauchy sequence in \mathbb{R} . Hence or otherwise show that the function $f: (0,1) \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$, 0 < x < 1 is not uniformly continuous.
 - (b) Prove that if $\{a_n\}$ converges to l, then the sequence $\{x_n\}$, where $x_n = \frac{a_1 + a_2 + \dots + a_n}{n}$, also converges to l.
- 8. (a) State and prove Lagrange's mean value theorem. Describe the theorem in h- θ form. 2+4+1
 - (b) Apply Lagrange's mean value theorem in h- θ form for the function $\sin x$ in $[0, \frac{\pi}{2}]$ and find θ .