2020
MATHEMATICS (Honours)

Paper Code : V-A \& B

(New Syllabus)

Important Instructions for Multiple Choice Question (MCQ)

- Write Subject Name and Code, Registration number, Session and Roll number in the space provided on the Answer Script.
Example : Such as for Paper III-A (MCQ) and III-B (Descriptive).

Subject Code : | III | A | $\&$ | B |
| :--- | :--- | :--- | :--- |

Subject Name : \square

- Candidates are required to attempt all questions (MCQ). Below each question, four alternatives are given [i.e. (A), (B), (C), (D)]. Only one of these alternatives is 'CORRECT' answer. The candidate has to write the Correct Alternative [i.e. (A)/(B)/(C)/(D)] against each Question No. in the Answer Script.
Example - If alternative A of 1 is correct, then write :

1. -A

- There is no negative marking for wrong answer.

মাল্টিপল চয়েস প্রশ্নের (MCQ) জন্য জরুরী নির্দেশাবলী

- উত্তরপG্রে নির্দেশিত স্থানে বিষয়ের (Subject) নাম এবং কোড, রেজিস্ট্রেশন নম্বর, সেশন এবং রোল নম্বর লিখতে হবে।

উদাহরণ — বেমন Paper III-A (MCQ) এবং III-B (Descriptive)।

Subject Code: | III | A | \& | B |
| :--- | :--- | :--- | :--- |

Subject Name : \square

- পরীক্ষর্থীদের সবগুলি প্রশ্নের (MCQ) উত্তর দিতে হবে। প্রতিটি প্রশ্নে চারটি করে সম্ভাব্য উত্তর, যথাক্রমম (A), (B), (C) এবং (D) করে দেওয়া আছে। পরীক্ষার্থীকে তার উত্তরের স্বপক্ষে (A) / (B) / (C) / (D) সঠিক বিকক্পটিকে প্রপ্ন নম্বর উল্লেখসহ উত্তরপত্রে লিখতে रবে।

উদাহরণ - যদি 1 নন্বর প্রশ্নের সঠিক উত্তর A হয় তবে লিখতে হবে :

1. -A

- ভুল উত্তরের জন্য কোন নেগেটিভ মার্কিং নেই।

Paper Code : V - A

Choose the correct answer.
Each question carries 2 marks.

1. Let $f:[0,1] \rightarrow \mathbb{R}$ be such that

$$
f(x)= \begin{cases}\frac{1}{n} & \text { if } \quad x=\frac{1}{n}, n \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

Then the value of $\int_{0}^{1} f(x) d x$
(A) is -1
(B) is 1
(C) is 0
(D) does not exist
2. The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ is
(A) 1
(B) 0
(C) $\frac{1}{2}$
(D) ∞
3. Define $f:[0,2] \longrightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{lll}
1 & \text { if } & x=1 \\
0 & \text { if } & x \neq 1
\end{array}\right.
$$

and define $g:[0,1] \longrightarrow \mathbb{R}$ by

$$
g(x)=\left\{\begin{array}{llll}
1 & \text { if } & x & \text { is rational } \\
0 & \text { if } & x & \text { is irrational }
\end{array}\right.
$$

Then
(A) both f, g are Riemann integrable
(B) f is Riemann integrable but g is not Riemann integrable
(C) g is Riemann integrable but f is not Riemann integrable
(D) None of these
4. Let $x ; y \in \mathbb{R}$ and define
$d_{1}(x, y)=(x-y)^{2}$ and $d_{2}(x, y)=\left|x^{2}-y^{2}\right|$
Then
(A) both d_{1} and d_{2} are metric
(B) d_{1} is a metric but d_{2} is not a metric
(C) d_{1} is not a metric but d_{2} is a metric
(D) neither d_{1} and d_{2} is a metric
5. If $f(z)=u+i v$ in polar form is analytic then $\frac{\partial u}{\partial r}$ is
(A) $\frac{\partial v}{\partial \theta}$
(B) $r \frac{\partial v}{\partial \theta}$
(C) $\frac{1}{r} \frac{\partial v}{\partial \theta}$
(D) $-\frac{\partial v}{\partial \theta}$
6. If A is an open set and B is a closed set in a metric space $(X ; d)$, then
(A) $A \backslash B$ is open and $B \backslash A$ is closed
(B) $A \backslash B$ is closed and $B \backslash A$ is open
(C) $A \backslash B$ is open and $B \backslash A$ is open
(D) $A \backslash B$ is closed and $B \backslash A$ is closed.
7. If $I_{n}=\left(-\frac{n}{n+1}, \frac{n}{n+1}\right)$, for $n=1,2,3, \ldots$ then $\bigcap_{n=1}^{\infty}\left(-\frac{n}{n+1}, \frac{n}{n+1}\right)$ equal to
(A) $(-1,1)$
(B) $\left[-\frac{1}{2}, \frac{1}{2}\right]$
(C) $\left(-\frac{1}{2}, \frac{1}{2}\right)$
(D) $\{0\}$
8. $\lim _{x \rightarrow 0} \frac{x}{1-e^{x^{2}}} \int_{0}^{x} e^{t^{2}} d t$
$(\mathrm{A})=0$
(B) $=1$
(C) $=-1$
(D) does not exist
9. The maximum of $f(x, y)=x^{2}+2 y^{2}$ on the circle $x^{2}+y^{2}=1$ is -
(A) 0
(B) 1
(C) 2
(D) 3
10. The value of the integral $\iint_{R} x y(x+y) d x d y$, where $R=[0,1] \times[0,1]$, is
(A) 3
(B) $\frac{1}{3}$
(C) 0
(D) 1

2020

MATHEMATICS (Honours)

Paper Code : V-B

(New Syllabus)

Full Marks : 80
Time : Three Hours Thirty Minutes
The figures in the margin indicate full marks.
Notations and symbols have their usual meanings.

Group-A
 (50 Marks)

Answer any five questions :
$10 \times 5=50$

1. (a) Define a compact set. Show that a compact subset of real numbers must be closed and bounded.
(b) Prove that the function $f(x)=\sum_{n=1}^{\infty} \frac{\sin \left(n x^{2}\right)}{1+n^{3}}, x \in \mathbb{R}$ is continuously differentiable on \mathbb{R}.
2. (a) Find the points on the circle $x^{2}+y^{2}=80$ which are closest to and farthest from the point $(1,2)$.
(b) Show that the sequence $\left\{f_{n}\right\}$ of functions, where $f_{n}(x)=n x e^{-n x^{2}}$ is pointwise convergent but not uniformly convergent on $[0, \infty)$.
3. (a) Show that a necessary and sufficient condition for a bounded real valued function f to be Riemann integrable on $[a, b]$ is that for each $\varepsilon>0, \exists \delta>0$ such that $0 \leq U(P, f)-L(P, f)<\varepsilon$ for every partition P with $\|P\|<\delta$.
(b) Show that $\left|\int_{p}^{q} \frac{\sin x}{x} d x\right| \leq \frac{2}{p}$, if $q>p>0$.
4. (a) Show that the improper integral $\int_{0}^{\infty} \frac{\sin x}{x} d x$ is not absolutely convergent.
(b) By changing the order of integration prove that

$$
\int_{0}^{1} d x \int_{0}^{\frac{1}{x}} \frac{y^{2} d y}{(x+y)^{2} \sqrt{1+y^{2}}}=\frac{1}{2}(2 \sqrt{2}-1)
$$

5. State and prove the Cantor's intersection theorem. Illustrate the theorem with an example.
6. (a) Using differentiation under the sign of integral show that

$$
\int_{0}^{\pi} \frac{\log (1+a \cos x)}{\cos x} d x=\pi \sin ^{-1} a
$$

$$
\begin{equation*}
\text { for }|a|<1 \text {. } \tag{5}
\end{equation*}
$$

(b) State and prove Taylor's theorem for the function of two variables.
7. (a) Test the convergence of beta and gamma functions.
(b) If $\int_{1}^{e} \frac{d t}{t}=1$, then show that $2<e<3$.
8. (a) Evaluate $\iint_{R} f(x, y) d x d y$ over the rectangle $R=[0,1] \times[0,1]$ where $f(x, y)=x+y$ if $x^{2}<y<2 x^{2}$ and $f(x, y)=0$ elsewhere.
(b) If a series $\sum f_{n}$ converges uniformly to f on $[a, b]$ and each term f_{n} is integrable on $[a, b]$, then show that f is integrable on $[a, b]$.

Group-B
 (15 Marks)

9. Answer any three questions.

$$
5 \times 3=15
$$

(a) Show that every metric space is a Hausdorff space.
(b) Let (X, d) be any metric space, then show that the function d_{1} defined by $d_{1}(x, y)=$ $\frac{d(x, y)}{1+d(x, y)}, \forall x, y \in X$ is a metric on X.
(c) Show that $C[a, b]$ is a separable metric space under 'sup' metric.
(d) For points x, y, a, b in a metric space (X, d), show that $|d(x, y)-d(a, b)| \leq d(x, a)+$ $d(y, b)$.
(e) Let (X, d) be a metric space and $A \subseteq X$. Prove that $\operatorname{Int}(A)$ is the largest open set contained in A.

Group-C
 (15 Marks)

10. Answer any three questions. $5 \times 3=15$
(a) Prove that the function $f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}$, when $z=x+i y \neq 0$ and $f(0)=0$ is continuous.
(b) Let $f(z)=u(x, y)+i v(x, y), z=x+i y$ and $z_{0}=x_{0}+i y_{0}$. Let the function $f(z)$ be defined in a domain D except possibly at the point z_{0} in D. Then prove that $\lim _{z \rightarrow z_{0}} f(z)=w_{0}=u_{0}+i v_{0}$ if and only if $\lim _{z \rightarrow z_{0}} u(x, y)=u_{0}$ and $\lim _{z \rightarrow z_{0}} v(x, y)=v_{0}$.
(c) Show that the function $u=x^{3}-3 x y^{2}$ is harmonic and also find the corresponding analytic function.
(d) Show that the real and imaginary parts of an analytic function satisfy Laplace's equation.
(e) Show that the function $f=u+i v$ where $u=x^{2}+y^{2}$ and $v=x y$ is nowhere analytic.
