2020 MATHEMATICS (Honours) Paper Code : VI - A & B (New Syllabus)

Full Marks : 100

Time : Four Hours

Important Instructions for Multiple Choice Question (MCQ)

• Write Subject Name and Code, Registration number, Session and Roll number in the space provided on the Answer Script.

Example : Such as for Paper III-A (MCQ) and III-B (Descriptive).

Subject Code : III A & B

Subject Name :

• Candidates are required to attempt all questions (MCQ). Below each question, four alternatives are given [i.e. (A), (B), (C), (D)]. Only one of these alternatives is 'CORRECT' answer. The candidate has to write the Correct Alternative [i.e. (A)/(B)/(C)/(D)] against each Question No. in the Answer Script.

Example – If alternative A of 1 is correct, then write : 1. - A

• There is no negative marking for wrong answer.

মাল্টিপল চয়েস প্রশ্নের (MCQ) জন্য জরুরী নির্দেশাবলী
 উত্তরপত্রে নির্দেশিত স্থানে বিষয়ের (Subject) নাম এবং কোড, রেজিস্ট্রেশন নম্বর, সেশন এবং রোল নম্বর লিখতে হবে।
উদাহরণ — যেমন Paper III-A (MCQ) এবং III-B (Descriptive)।
Subject Code : III A & B
Subject Name :
 পরীক্ষার্থীদের সবগুলি প্রশ্নের (MCQ) উত্তর দিতে হবে। প্রতিটি প্রশ্নে চারটি করে সম্ভাব্য উত্তর, যথাক্রমে (A), (B), (C) এবং (D) করে দেওয়া আছে। পরীক্ষার্থীকে তার উত্তরের স্বপক্ষে (A) / (B) / (C) / (D) সঠিক বিকল্পটিকে প্রশ্ন নম্বর উল্লেখসহ উত্তরপত্রে লিখতে হবে।
উদাহরণ — যদি 1 নম্বর প্রশ্নের সঠিক উত্তর A হয় তবে লিখতে হবে :
1. – A
• ভুল উত্তরের জন্য কোন নেগেটিভ মার্কিং নেই।

Paper Code : VI - A

Full Marks : 20

Time : Thirty Minutes

Choose the correct answer. Each question carries 2 marks.

- **1.** For any two events A and B,
 - (A) $P(A \cap B) \le P(A) \le P(A \cup B) \le P(A) + P(B)$
 - (B) $P(A) \leq P(A \cap B) \leq P(A \cup B) \leq P(A) + P(B)$
 - (C) $P(A \bigcup B) \le P(A \cap B) \le P(A) \le P(A) + P(B)$
 - (D) $P(A) + P(B) \le P(A \bigcup B) \le P(A \cap B) \le P(A)$.
- **2.** A function f(x) given by $f(x) = \begin{cases} x & 0 < x < 1 \\ k x & 1 < x < 2 \\ 0 & \text{elsewhere} \end{cases}$

is a probability density function for a suitable value of k. The value of k is

- (A) 1
- (B) 2
- (C) 4
- (D) $\frac{3}{2}$.

3. The random variable X is normal (0, 1). The variance of e^X is

- (A) $e e^2$
- (B) $e^3 e$
- (C) $e^2 e$
- (D) $e e^3$.

4. The characteristic function of a $\gamma(l)$ variate is

- (A) $(1 it)^{2l}$
- (B) $(1 it)^{-2l}$
- (C) $(1 it)^l$
- (D) $(1 it)^{-l}$.

- 5. The acute angle θ between the least square regression lines is given by
 - $\begin{aligned} \text{(A)} \ \tan \theta &= \frac{1-\rho^2}{\rho} \cdot \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} \\ \text{(B)} \ \tan \theta &= \frac{1-\rho^2}{\rho} \cdot \frac{\sigma_x^2 + \sigma_y^2}{\sigma_x \sigma_y} \\ \text{(C)} \ \tan \theta &= \frac{\rho}{1-\rho^2} \cdot \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} \\ \text{(D)} \ \tan \theta &= \frac{\rho}{1-\rho^2} \cdot \frac{\sigma_x^2 + \sigma_y^2}{\sigma_x \sigma_y}. \end{aligned}$

6. The skewness in a binomial distribution will be zero if

- (A) $p < \frac{1}{2}$ (B) $p = \frac{1}{2}$
- (C) $p > \frac{1}{2}$
- (D) p < q.

7. The binary form of the hexadecimal digit 'F' is

- (A) 1001
- (B) 1011
- (C) 1111
- (D) 1101.
- 8. The relation between the backward difference operator ∇ and the shift operator E is
 - (A) $E 1 = \nabla$
 - (B) $1 E = \nabla$
 - (C) $E^{-1} 1 = \nabla$
 - (D) $\nabla = 1 E^{-1}$.

9. The 'degree of precession' of Trapezoidal rule is

- (A) 1
- (B) 2
- (C) 4
- (D) 5.

- 10. The relation between the forward difference operator \triangle and the differential operator $D(=\frac{d}{dx})$ of differential calculus
 - (A) $D = \frac{1}{h} \left(\bigtriangleup + \frac{\bigtriangleup^2}{2} + \frac{\bigtriangleup^3}{3} + \frac{\bigtriangleup^4}{4} + \cdots \infty \right)$ (B) $D = \frac{1}{h} \left(\bigtriangleup - \frac{\bigtriangleup^2}{2} + \frac{\bigtriangleup^3}{3} - \frac{\bigtriangleup^4}{4} + \cdots \infty \right)$ (C) $D = \frac{1}{h} \left(\bigtriangleup + \frac{\bigtriangleup^3}{3} + \frac{\bigtriangleup^5}{5} + \cdots \infty \right)$ (D) $D = \frac{1}{h} \left(\bigtriangleup - \frac{\bigtriangleup^3}{3} + \frac{\bigtriangleup^5}{5} - \cdots \infty \right).$

2020 MATHEMATICS (Honours) Paper Code : VI - B (New Syllabus)

Time : Three Hours Thirty Minutes

Full Marks : 80

The figures in the margin indicate full marks. Notations and symbols have their usual meanings.

Group-A

(40 Marks)

Answer question no. 1 and any six from the rest.

1. The joint probability density function of two random variables X and Y is given by

$$f(x,y) = \begin{cases} k(3x+y) & 1 \le x \le 3, \ 0 \le y \le 2\\ 0 & \text{elsewhere.} \end{cases}$$

Find

(i) The value of k and

(ii)
$$P(X + Y < 2)$$
.

\mathbf{Or}

Prove that
$$P(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} P(A_i).$$
 4

- **2.** If p and q are independent variables each uniformly distributed over the interval (-1, 1), then find the probability that the equation $x^2 2px + q = 0$ has real roots. **6**
- **3.** If X is a standard normal variate, then prove that $Y = X^2/2$ is a $\gamma(1/2)$ variate. **6**
- 4. Prove the Schwartz's inequality for expectations that $[E(XY)]^2 \leq E(X^2) \cdot E(Y^2)$ and hence deduce the range of the correlation coefficient between X and Y. 6
- 5. State and prove Tchebyshev's inequality.
- **6.** For a Binomial (n, p) distribution, prove that

$$\mu_{k+1} = p(1-p)\{n\mu_{k-1} + \frac{d\mu_k}{dp}\}\$$

1

and hence obtain γ_1 .

Turn Over

6

1+5

(6)

- 7. Obtain a test for the null hypothesis H_0 : $m = m_0$ against the alternate hypothesis H_1 : $m > m_0$ for a normal (m, σ) population when σ is known. 6
- 8. For a normal (m, σ) population, prove that the statistic $\frac{nS^2}{\sigma^2}$ has χ^2 distribution with n-1 degrees of freedom, where S^2 is the sample variance of a random sample of size n drawn from the given population. 6
- 9. A random variable X can take all non-negative integral values and $P(X = x) = p(1-p)^x$, $x = 0, 1, 2, 3, \ldots$ where $p(0 is a parameter. Find the maximum likelihood estimate of p on the basis of a random sample <math>x_1, x_2, \ldots, x_n$ of size n drawn from the population of X. Examine whether the estimate is consistent. 6
- 10. The mean and variance of a sample of size 400 from a normal population are found to be 18.35 and 3.25 respectively. Given P(Z > 1.96) = 0.025, Z being a standard normal variate, find 95% confidence interval for the population mean. 6

Group-B

(40 Marks)

Answer question no. 11 and any six from the rest.

11. (a) Find the interpolation polynomial which corresponds to the following data:

or

(b) Write a short note on 'if' statement and 'if-else' statement.

- 12. Show that the remainder in approximating f(x) by the interpolation polynomial using distinct interpolating points $x_0, x_1, x_2, \dots, x_n$ is of the form $(x x_0)(x x_1) \cdots (x x_n) \frac{f^{n+1}(\xi)}{(n+1)!}$, where ξ lies between the minimum and maximum of the points $x_0, x_1, x_2, \dots, x_n$. 6
- 13. Establish Weddle's rule for numerical integration in composite form. State the error term.

5 + 1

6

4

- 14. Write a program in C/FORTRAN to compute the sum of the convergent series $x \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + \cdots \infty$.
- **15.** Write a computer program in C/FORTRAN to obtain the sum of matrices $[a_{ij}]_{m \times n}$ and $[b_{ij}]_{m \times n}$.
- 16. Establish Langrange's polynomial interpolation formula with remainder term. 6
- Describe Gauss-Siedel method for numerical solution of a system of linear equations. State the condition of convergence of the method.
 5+1

Turn Over

- 18. Describe Newton-Raphson method for computing a simple real root of the equation f(x) = 0. Calculate the order of convergence of the method. 2+4
- **19.** Write a computer program in C/FORTRAN to find mean and variance of a sample (x_1, x_2, \dots, x_n) of size n. **6**
- **20.** If N denotes the total number of operations of multiplications and divisions required in Gauss elimination method, then prove that $N = \frac{n^3}{3} + n^2 \frac{n}{3}$. **6**