2019

PHYSICS

(Honours)

Paper: PHYH-DC-2

[CBCS]

Full Marks: 25

Time: Two Hours

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:

 $2 \times 5 = 10$

- (a) If a force \vec{F} acts on a particle at right angles to its velocity \vec{v} , prove that $|\vec{v}| = \text{constant}$.
- (b) Show that the gravitational force is conservative.
- (c) Two particles A and B, each of mass m, and another particle C of mass M are kept on the x-axis in the order A B C. Particle A is given a velocity vî. Consequently there are two collisions, both of which are completely inelastic so that the three particles get embedded into

P.T.O.

one another to form a composite mass. If the net energy loss due to these collisions is $\frac{7}{8}$ of the initial energy, prove that M = 6m. Ignore frictional losses.

- (d) A particle moves in a force field given by $\vec{F} = r^2 \vec{r}$, where \vec{r} is the position vector of the particle. Prove that the angular momentum of the particle about the origin is conserved.
 - (e) A solid cylinder of mass M and radius R rolls down an inclined plane of vertical height 'h'. If the body starts from rest at the top of the incline, prove that its velocity at the bottom will

be
$$v = \left(\frac{4}{3}gh\right)^{\frac{1}{2}}$$
.

- (f) Show that a non-inertial frame of reference gives rise to fictitious forces.
- (g) Differentiate between Newtonian and non-Newtonian fluids giving specific examples of each.
- (h) With the help of a diagram, explain the meaning of the 'neutral surface' in case of bending of beams.

2. Answer any three questions:

5×3=15

(a) Define radius of gyration of a rotating body about its axis of rotation.

The surface density of a disc of mass M and

radius R is given by $\rho(r) = \rho_0 \left(1 - \frac{r}{R} \right)$ for

 $0 \le r \le R$, where ρ_0 is a constant. Prove that the radius of gyration of the disc about an axis perpendicular to its plane and passing through

its centre is $k = \sqrt{\frac{3}{10}}R$. 1+4=5

(b) 'The gravitational potential of a body at any point is negative'— What is the physical significance of this statement?

Find the gravitational potential at any point in the material of a thick spherical shell of mass M, having internal and external radii as 'a' and 'b' respectively.

1+4=5

(c) What is meant by a central force?

The path of a particle of a mass 'm', moving under the influence of a central force, in plane polar co-ordinates, is given by $r = r_0 e^{k\theta}$, where r_0 and k are positive constants of appropriate dimensions. The angular momentum of the particle is \vec{L} and its total energy is zero. Show that the potential energy V(r) of the particle

is given by $V(r) = \frac{(k^2 + 1)L^2}{2mr^2}$. 1+4=5

(d) Calculate the limiting values of Poisson's ratio(σ) of an elastic body.

A gold wire, 0.32 mm in diameter, elongates by 1.0 mm when stretched by a force of 330 gm-wt and twists through one radian, when equal and opposite torques of 145 dyne cm are applied at its ends. Taking g=981 cmsec⁻², show that $\sigma = 0.429$ for gold. 2+3=5

(e) With necessary assumptions, deduce Poiseuille's formula for the viscous flow of a liquid in a capillary tube.