2020

CHEMISTRY (Honours)

Paper Code: II - A & B
[New Syllabus]

Important Instructions for Multiple Choice Question (MCQ)

• Write Subject Name and Code, Registration number, Session and Roll number in the space provided on the Answer Script.

Example: Such as for Paper III-A (MCQ) and III-B (Descriptive).

Subject Code : III A & B

Subject Name :

• Candidates are required to attempt all questions (MCQ). Below each question, four alternatives are given [i.e. (A), (B), (C), (D)]. Only one of these alternatives is 'CORRECT' answer. The candidate has to write the Correct Alternative [i.e. (A)/(B)/(C)/(D)] against each Question No. in the Answer Script.

Example — If alternative A of 1 is correct, then write :

1. – A

There is no negative marking for wrong answer.

Page: 1 of 8

মাল্টিপল চয়েস প্রশ্নের (MCQ) জন্য জরুরী নির্দেশাবলী

• উত্তরপত্রে নির্দেশিত স্থানে বিষয়ের (Subject) নাম এবং কোড, রেজিস্ট্রেশন নম্বর, সেশন এবং রোল নম্বর লিখতে হবে।

উদাহরণ — যেমন Paper III-A (MCQ) এবং III-B (Descriptive)।

Subject Code: III A & B

Subject Name :

• পরীক্ষার্থীদের সবগুলি প্রশ্নের (MCQ) উত্তর দিতে হবে। প্রতিটি প্রশ্নে চারটি করে সম্ভাব্য উত্তর, যথাক্রমে (A), (B), (C) এবং (D) করে দেওয়া আছে। পরীক্ষার্থীকে তার উত্তরের স্বপক্ষে (A)/(B)/(C)/(D) সঠিক বিকল্পটিকে প্রশ্ন নম্বর উল্লেখসহ উত্তরপত্রে লিখতে হবে।

উদাহরণ — যদি 1 নম্বর প্রশ্নের সঠিক উত্তর A হয় তবে লিখতে হবে : 1. — A

• ভুল উত্তরের জন্য কোন নেগেটিভ মার্কিং নেই।

Page: 2 of 8

Paper Code: II - A

Full Marks: 10 Time: Twenty Minutes

Answer all the Questions.

Choose the Correct Answer.

Each Question Carries 1 Mark.

1. The radii of F, F⁻, O, O²⁻ are in the order of —

(a)
$$O^{2-} > F^{-} > F > O$$

(b)
$$F^- > O^{2-} > O > F$$

(c)
$$O^{2-} > O > F^{-} > F$$

(d)
$$O^{2-} > F^- > O > F$$

2. Which of the following represents correct order of electron affinity —

(a)
$$Cl > F > S > O$$

(b)
$$F > O > S > C1$$

(c)
$$F > Cl > S > O$$

(d)
$$Cl > S > O > F$$

3. Which of the following halide is inert towards hydrolysis at room temperature —

- (a) SiCl₄
- (b) PCl₃
- (c) NCl₃
- (d) NF_3

Page: 3 of 8

4.	. Which of the following substance has the highest melting point —		
	(a) BaO		
	(b) MgO		
	(c) KCl		
	(d) NaCl		
5.	The molecular geometry of BF ₃ is —		
	(a) Tetrahedral		
	(b) Pyramidal		
	(c) Square Planar		
	(d) Trigonal Planar		
6.	In the structure of ${\rm ClF_3}$ the number of lone pairs of electrons on central atom ${\rm Cl}$ is —		
	(a) One		
	(b) Two		
	(c) Four		
	(d) Three		
7.	The lattice energies of KF, KCl, KBr and KI are in the order —		
	(a) $KI > KCl > KBr > KI$		
	(b) $KI > KBr > KCl > KF$		
	(c) $KF > KCl > KI > KBr$		
	(d) $KI > KBr > KF > KC1$		
	Page: 4 of 8		

8.	Whi	ch of the following orbital combination cannot form π bond?
	(a)	$p_x + p_x$ sideways overlapping
	(b)	$d_{x-y}^{2} + p_y$ sideways overlapping
	(c)	$d_{xy} + d_{xy}$ sideways overlapping
	(d)	$d_{yz} + p_y$ sideways overlapping
9.	Whi	ch is the strongest acid in the following?
	(a)	HClO ₃
	(b)	HClO ₄
	(c)	H_2SO_3
	(d)	H_2SO_4
10.	The in —	electronic transition from $n=2$ to $n=1$ will produce shortest wavelength
	(a)	Li ⁺²
	(b)	He^+
	(c)	Н
	(d)	$\mathrm{H}^{\scriptscriptstyle +}$

2020

CHEMISTRY (Honours)

Paper Code: II - B
[New Syllabus]

Full Marks: 40 Time: One Hour Fourty Minutes

The figures in the margin indicate full marks.

Answer any four questions taking two from each group.

Group - A

- (a) Discuss physical significance of magnetic quantum number.
 (b) Determine the ground state term for V⁺².
 (c) What optical transition in He⁺ spectrum would have the same wavelength as the first Lyman transition of hydrogen (Neglect the effect of reduced masss)
 - (d) Out of the following configuration which will be more stable. Justify.

(i)
$$(n-1)d^4ns^2$$
, (ii) $(n-1)d^5ns^{-1}$

- 2. (a) By using Slater's rule calculate the effective nuclear charge for one 3d and one 4s electron of Fe.
 - (b) The first ionization potential of the coinage metals follows the order Cu > Ag < Au. Explain.
 - (c) Group 3 elements show regular trend in their atomic radii but group 4 elements show irregular trend. Explain.
 - (d) Discuss the position of noble gases in the modern periodic table.

Page: 6 of 8

- 3. (a) Calculate the electronegativity of bromine (Atomic no-35) in Allred Rochow scale. E_{covalent} = 114 pm.
 3 (b) Fluorine is more electronegative than chlorine but electron affinity of chlorine is more than that of fluorine. Explain.
 (c) What are superacids? How the acidity of such solution is measured?
 - (c) What are superacids? How the acidity of such solution is measured? Explain citing examples.
 - (d) In an atom the angular momentum of an electron is $\sqrt{6} \, h/2\pi$. What is the minimum value of the principal quantum number of the electron? 2
- 4. (a) Define electron affinity of an element. Electron affinity of nitrogen is negative. Explain.
 - (b) How is hardness of a base evaluated? Why is methyl mercury cation chosen as the standard for this purpose?
 - (c) What is HSAB principle? Explain with example characteristics of soft and hard acids and bases.

Group - B

- 5. (a) Calculate the limiting radius ratio (r^-/r^+) of CsCl structure (CN = 8).
 - (b) Using VSEPR theory, predict the shape and indicate the state of hybridization of the central atom of the following.
 - (i) $IO_2F_2^+$, (ii) XeF_5^- , (iii) CIF_3
 - (c) Write down the Born Lande expression of Lattice energy for NaCl type of crystal and hence explain the term involved therein.
 - Write down the name and formula of a paramagnetic halogen oxide. 1
- 6. (a) Calculate the formal charge on the constituent atoms in the molecule $N_t=N_c-O$.
 - (b) The thermal stability of isomorphous sulphates of Ca, Sr and Ba with respect of decomposition into metal oxides (MO) and SO₃ increases in the sequence CaSO₄ < SrSO₄ < BaSO₄. Explain.

Page : 7 of 8

	(c)	Explain why SF ₄ readily hydrolyses but SF ₆ does not.	2
	(d)	What is Bent's rule? Explain with example.	2
7.	(a)	Draw the most likely structure of PCl ₂ Br ₃ and give reasons to support	it
	(b)	Sulphuric acid and telluric acid are differentially formulated. Comment.	2
	(c)	Explain the order of acid strength of HF, HCl, HBr and HI in aqueo solution.	ou E
	(d)	P_4 , P_4O_6 and P_4O_{10} are related structurally. Explain.	2
8.	(a)	Give a comparative account of the chemistry of C, Si, Ge, Sn and with special reference to their oxidation states and hydrides.	P
	(b)	Discuss the structure and bonding in B ₂ H ₆ .	3
	(c)	Write a short note on chloroflurocarbon.	3

Page: 8 of 8