$$
\text { P - I (1+1+1) H / } 20(\mathbf{N})
$$

2020

CHEMISTRY (Honours)

Paper Code : III - A \& B

 [New Syllabus]
Important Instructions for Multiple Choice Question (MCQ)

- Write Subject Name and Code, Registration number, Session and Roll number in the space provided on the Answer Script.

Example : Such as for Paper III-A (MCQ) and III-B (Descriptive).

Subject Code : | III | A | $\&$ | B |
| :--- | :--- | :--- | :--- |

Subject Name :

- Candidates are required to attempt all questions (MCQ). Below each question, four alternatives are given [i.e. (A), (B), (C), (D)]. Only one of these alternatives is 'CORRECT' answer. The candidate has to write the Correct Alternative [i.e. (A)/(B)/(C)/(D)] against each Question No. in the Answer Script.
Example - If alternative A of 1 is correct, then write :

$$
\text { 1. }-\mathrm{A}
$$

- There is no negative marking for wrong answer.

মান্টিপল চয়েস প্রশ্নের (MCQ) জন্য জরুরী নির্দেশাবলী

- উত্রপত্রে নির্দেশিত স্থানে বিয়্যের (Subject) নাম এবং কোড, রেজিস্ট্রেশশ নম্বর, সেশন এাং রোল নম্বর লিখতে হবে।

উদাহ্রণ — যেমন Paper III-A (MCQ) এবং III-B (Descriptive)।

Subject Code : | $I I$ | A | $\&$ | B |
| :--- | :--- | :--- | :--- |

Subject Name : \square

- পরীক্ষর্থীদের সবগুলি প্রশ্নের (MCQ) উত্তর দিতে হবে। প্রতিটি প্রশ্নে চারটি করে সম্ভব্য উত্তর, যথাক্রমে (A), (B), (C) এবং (D) করে দেওয়া আছে। পরীক্ষার্থীকে তার উত্তরের স্বপক্ষ (A) / (B) / (C) / (D) সঠিক বিকল্পটিকে প্রশ্ন নম্বর উল্লেখসহ উত্তরপত্রে লিখতে হবে।

উদাহরণ — यদি 1 নন্বর প্রশ্নের সঠিক উত্তর A হয় তবে লিখতে হবে :

1. -A

- ভুল উত্তরের জন্য কোন নেগোটিভ মার্কিং নেই।

Paper Code : III-A

Full Marks : 10
Time : Twenty Minutes

Answer all the Questions.
Choose the Correct Answer.
Each Question Carries 1 Mark.

1. Which of the following properties is an extensive property?
(i) Specific heat
(ii) Heat capacity
(iii) Viscosity coefficient
(iv) Surface tension
2. $\left(\frac{\partial \mathrm{S}}{\partial \mathrm{P}}\right)_{\mathrm{T}}=$
(i) $-\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{P}}$
(ii) $\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{P}}$
(iii) $-\left(\frac{\partial \mathrm{P}}{\partial \mathrm{T}}\right)_{V}$
(iv) $\left(\frac{\partial \mathrm{P}}{\partial \mathrm{T}}\right)_{\mathrm{V}}$
3. $\Delta \mathrm{G}_{\text {mixing }}$ for two ideal gases vs mole fraction plot -
(i) passes through a maximum
(ii) passes through a minimum
(iii) is parallel to mole fraction axis
(iv) is parabola
4. Which is not true for an ideal gas -
(i) $\left(\frac{\partial \mathrm{E}}{\partial \mathrm{V}}\right)_{\mathrm{T}}=0$
(ii) $\left(\frac{\partial \mathrm{H}}{\partial \mathrm{P}}\right)_{\mathrm{T}}=0$
(iii) $\left(\frac{\partial \mathrm{E}}{\partial \mathrm{T}}\right)_{\mathrm{V}}=0$
(iv) $\left[\frac{\partial(\mathrm{PV})}{\partial \mathrm{P}}\right]_{\mathrm{T}}=0$
5. The square of average velocity $<v_{\mathrm{x}}>$ for a collection of gas molecules obeying Maxwell's velocity distribution is -
(i) $\left(\frac{8 \mathrm{kT}}{\pi \mathrm{m}}\right)$
(ii) $\left(\frac{\mathrm{kT}}{\mathrm{m}}\right)$
(iii) 0
(iv) $\left(\frac{3 \mathrm{kT}}{\mathrm{m}}\right)$
6. The Boyle temperature for a van der Waals' gas is -
(i) $\frac{a}{2 R b}$
(ii) $\frac{a}{R b}$
(iii) $\frac{a}{3 R b}$
(iv) $\frac{8 a}{3 R b}$
7. The excess pressure inside an air cavity in water is -
(i) $\frac{\gamma}{r}$
(ii) $\frac{4 \gamma}{r}$
(iii) $\frac{3 \gamma}{r}$
(iv) $\frac{2 \gamma}{r}$
8. If K_{1} and K_{2} are equilibrium constants for a given exothermic reaction at temperatures T_{1} and T_{2} where $T_{1}<T_{2}$, the relation between K_{1} and K_{2} is -
(i). $K_{1}<K_{2}$
(ii). $K_{1}>K_{2}$
(iii). $K_{1}=K_{2}$
(iv). $K_{1} \leq K_{2}$
9. At constant temperature the viscosity of a gas depends on pressure (P) as
(i) $\eta \propto P^{1 / 2}$
(ii) $\eta \propto P$
(iii) η is independent of pressure
(iv) $\eta \propto P^{2}$
10. The expression for efficiency (η) for a Carnot refrigerator is -
(i) $1 /\left(\frac{T_{\text {hot }}}{T_{\text {cold }}}-1\right)$
(ii) $1-\left(\frac{T_{\text {cold }}}{T_{\text {hot }}}\right)$
(iii) $1 /\left(\frac{T_{\text {hot }}}{T_{\text {cold }}}+1\right)$
(iv) $\left(\frac{T_{\text {hot }}}{T_{\text {cold }}}-1\right)$

CHEMISTRY (Honours)

Paper Code : III - B
[New Syllabus]
Full Marks : 40
Time : One Hour Forty Minutes
The figures in the margin indicate full marks.
Answer any four questions taking two from each group.

Group-A

1. (a) Starting from Maxwell's velocity distribution in 1 dimension, arrive at the speed distribution function in 2 dimensions.
(b) Explain why the C_{v}-value for N_{2} is always found to be less than that of Cl_{2} at ordinary temperature.
(c) The viscosity coefficient of gaseous CO_{2} at $27^{\circ} \mathrm{C}$ is 15×10^{-4} poise. Find the molecular diameter. 4
2. (a) Write down the virial equation of state. Recast the van der Waals' equation as an expansion in terms of $1 / \mathrm{V}$ (here, V is the molar volume) and hence predict the second virial coefficient according to it.
$1+1+1$
(b) The second virial coefficient of a gas is $13.7 \mathrm{lit} \mathrm{mol}^{-1}$ at 273 K . Calculate the molar volume of the gas at N.T.P.
(c) Draw the Andrews isotherms for a real gas at different temperatures and identify T_{C} and $\overline{\mathrm{V}}_{\mathrm{C}}$ on the diagram.
(d) The behavior of two gases A and B can be approximated by van der Waals' equation. The critical constants of these gases are given below :

Gas	$\mathrm{Pc} / \mathrm{atm}$	$\mathrm{Vc} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}$	Tc / K
A	81.5	81.0	324.7
B	2.26	57.76	5.21

Explain :
(i) Which gas has greater intermolecular force of attraction.
(ii) Which gas obeys more closely the van der Waals' equation at critical state?
3. (a) Calculate $q, w, \Delta U, \Delta H$ for reversible isothermal expansion at 300 K of 5 moles of an ideal gas from 500 ml to 1500 ml . What would be the w and ΔU if the expansion occurs between the same initial and final states as before, but is done by expanding the gas in vacuum?

4
(b) Give a physical reason of the fact that adiabatic $\mathrm{P}-\mathrm{V}$ curve of an ideal gas is steeper than the corresponding isothermal curve. Depict it graphically.
(c) Show that the work done in a reversible process is numerically greater than that in an irreversible process.
4. (a)
$3^{\text {at }} 298 \mathrm{~K}$ is $-11.0 \mathrm{cal} \mathrm{mol}^{-1}$. Calculate the heat of reaction,
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ at 400 K .
Given : $C_{P}\left(N_{2}\right)=6.5+10^{-3} \mathrm{~T}$ cal $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$,
$C_{P}\left(\mathrm{H}_{2}\right)=6.5+9 \times 10^{-4} \mathrm{~T} \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$,
$C_{P}\left(\mathrm{NH}_{3}\right)=8.04+7 \times 10^{-4} \mathrm{~T}+5.1 \times 10^{-6} \mathrm{~T}^{2} \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$.
(b) Show that for an ideal gas $C_{P}-C_{V}=\left[\left(\frac{\partial E}{\partial V}\right)_{T}+P\right]\left(\frac{\partial V}{\partial T}\right)_{P}$.
(c) A gas is suspected to be Neon or Nitrogen. When a given sample of the gas at $25^{\circ} \mathrm{C}$ expanded adiabatically from 5 lit to 6 lit, the temperature came down to $4^{\circ} \mathrm{C}$. What was the gas?

Group - B

5. (a). Prove that $\oint \frac{d q}{T} \leq 0$ and from this expression show that $d s \geq \frac{d q}{T}$.
(b) Show that $\mu_{J T}=V(\alpha T-1) / C_{P}$, where $\mu_{J T}$ is the Joule-Thomson coefficient and α is the temperature coefficient of volume expansion. 3
(c) Derive the relation : $\left(\frac{\partial T}{\partial P}\right)_{S}=\left(\frac{\partial V}{\partial S}\right)_{P}$
6. (a) Show that $\left(\frac{\partial(G / T)}{\partial(1 / T)}\right)_{P}$ is a state function.
(b) Under what conditions is $\Delta S<0$ for a spontaneous process?
(c) Show that $C_{P}-C_{V}=\frac{V T}{\beta} \alpha^{2}$ where, $\alpha=$ coefficient of thermal expansion, $\beta=$ coefficient of compression of gas.
7. (a) At $25^{\circ} \mathrm{C}$ for the reaction : $B r_{2}(g)=2 \operatorname{Br}(g)$, we have $\Delta G^{0}=161.67$ $\mathrm{kJ} / \mathrm{mol}$ and $\Delta H^{0}=192.81 \mathrm{~kJ} / \mathrm{mol}$. At what temperature will the system contain 10 mol per cent bromine atoms in equilibrium with bromine vapor at $P=1 \mathrm{~atm}$.
(b) Establish the relation between K_{p} and K_{x}.
(c) If ξ is the degree of advancement of chemical reaction, then at equilibrium

$$
\begin{equation*}
\left(\frac{\partial G}{\partial \xi}\right)_{P, T}=0 . \text { Justify. } \tag{2}
\end{equation*}
$$

(d) Determine the effect of introducing an inert gas, keeping pressure of the system constant, on the position of the equilibrium of the following reaction:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

8. (a) A steel ball of density $7.9 \mathrm{gm} / \mathrm{cc}$ and 4 mm diameter requires 55 sec to fall a distance of 1 meter through a liquid of density $1.10 \mathrm{gm} / \mathrm{cc}$. Calculate the coefficient of viscosity of the liquid.
(b) A spherical air bubble is created within a liquid of surface tension 72 dyne/ cm . if the volume of the bubble is $\pi / 6 \mathrm{~cm}^{3}$, calculate the excess pressure inside the bubble.
(c) Comment on the temperature dependence of viscosity coefficients of gases and liquids. Can the mechanisms of flow of the two be interpreted from the character of these temperature dependence?

4

