PHYSICS (Honours)

Paper Code : I-A \& B

[New Syllabus]

Important Instructions
 for Multiple Choice Question (MCQ)

- Write Subject Name and Code, Registration number, Session and Roll number in the space provided on the Answer Script.
Example : Such as for Paper III-A (MCQ) and III-B (Descriptive).

Subject Code : | III | A | $\&$ | B |
| :--- | :--- | :--- | :--- |

Subject Name :

- Candidates are required to attempt all questions (MCQ). Below each question, four alternatives are given [i.e. (A), (B), (C), (D)]. Only one of these alternatives is 'CORRECT' answer. The candidate has to write the Correct Alternative [i.e. (A)/(B)/(C)/(D)] against each Question No. in the Answer Script.
Example - If alternative A of 1 is correct, then write :

1. -A

- There is no negative marking for wrong answer.

মান্টিপল চয়েস প্রশ্নের (MCQ) জন্য জরুরী নির্দেশাবলী

- উত্রপত্রে নির্দেশিত স্থানে বিয়্যের (Subject) নাম এবং কোড, রেজিস্ট্রেশশ নম্বর, সেশন এঞং রোল নম্বর লিখতত হবে।

উদাহ্রণ — যেমন Paper III-A (MCQ) এবং III-B (Descriptive)।

Subject Code : | $I I$ | A | $\&$ | B |
| :--- | :--- | :--- | :--- |

Subject Name : \square

- পরীক্ষর্থীদের সবগুলি প্রপ্নের (MCQ) উত্তর দিতে হবে। প্রতিটি প্রশ্নে চারটি করে সম্ভব্য উত্তর, যথাক্রমে (A), (B), (C) এবং (D) করে দেওয়া আছে। পরীক্ষার্থীকে তার উত্তরের স্বপক্ষ (A) / (B) / (C) / (D) সঠिক বিকল্পটিকে প্রশ্ন নম্বর উল্লেখসহ উত্তরপত্রে লিখতে হবে।

উদাহরণ — यদি 1 নম্বর প্রশ্নের সঠিক উত্তর A হয় তবে লিখতে হবে :

1. -A

- ভুল উত্তরের জন্য কোন নেগোটিভ মার্কিং নেই।

Paper Code : I-A

Answer all the Questions.
Choose the Correct Answer.
Each Question Carries 1.5 Marks.

1. For the vectors $\vec{a}=\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+3 \hat{j}, \vec{c}=\hat{j}-\hat{k}$; the vector product of $\vec{a} \times(\vec{b} \times \vec{c})$ is
(A) in the direction opposite to \vec{c}
(B) in the same direction as \vec{c}
(C) in the same direction as \vec{b}
(D) in the direction opposite to \vec{c}
2. The value of $\vec{\nabla} \cdot \vec{r}$ is -
(A) 7
(B) 11
(C) 2
(D) 3
3. Eight drops of water of same size are falling through air with terminal velocity of $10 \mathrm{~m} / \mathrm{sec}$. If the eight drops combine to form a single drop what will be the new terminal velocity?
(A) $40 \mathrm{~m} / \mathrm{s}$
(B) $42 \mathrm{~m} / \mathrm{s}$
(C) $45 \mathrm{~m} / \mathrm{s}$
(D) $42 \mathrm{~cm} / \mathrm{s}$
4. The diameter of the orbit of a planet round the Sun is 30 times the diameter of the Earth's orbit round the Sun; both the orbits are assumed to be circular. The time of revolution of that planate about the sun is -
(A) 170 Year (nearly)
(B) 164 Year (nearly)
(C) 185 Year (nearly)
(D) 183 Year (nearly)
5. The eigen values of the matrix representing the following pair of linear equations $x+i y=0$ and $i x+y=0$ are -
(A) $1+\mathrm{i}, 1+\mathrm{i}$
(B) $1-\mathrm{i}, 1-\mathrm{i}$
(C) $1, \mathrm{i}$
(D) $1+\mathrm{i}, 1-\mathrm{i}$
6. Two masses constrained to move on a horizontal plane collided with each other. Given $\mathrm{m}_{1}=85 \mathrm{~g}, \mathrm{~m}_{2}=200 \mathrm{~g}, \mathrm{u}_{1}=6.48 \mathrm{~cm} / \mathrm{s}, \mathrm{u}_{2}=-6.78 \mathrm{~cm} / \mathrm{s}$. The velocity of centre of mass would be -
(A) $2.01 \mathrm{~cm} / \mathrm{s}$
(B) $2.01 \mathrm{~m} / \mathrm{s}$
(C) $2.82 \mathrm{~m} / \mathrm{s}$
(D) $2.82 \mathrm{~cm} / \mathrm{s}$
7. Given surface tension of soap solution is $20 \times 10^{-3} \mathrm{~N} / \mathrm{m}$ and the radius of soap bubble is $3 \times 10^{-3} \mathrm{~m}$. Calculate the surface energy.
(A) 22.62×10^{-7} Joule
(B) 22.62×10^{-5} Joule
(C) 20.04×10^{-5} Joule
(D) 20.04×10^{-7} Joule
8. The acceptable value of Poisson ratio (σ) for an elastic body may be -
(A) 0.6
(B) -2.3
(C) -1.2
(D) 0.4
9. $A=\left[\begin{array}{lll}2 & 4 & 1 \\ 3 & 7 & 2 \\ 0 & 1 & 3\end{array}\right] ; T_{r} A=$?
(A) 10
(B) 11
(C) 12
(D) 13
10. Consider a particle of mass ' m ' following a trajectory given by $x=x_{0} \cos \omega_{1} t$ and $y=y_{0} \sin \omega_{2} t$, where x_{0}, y_{0}, ω_{1} and ω_{2} constants of appropriate dimensions. The nature of the force will be central.
(A) only if $\omega_{1}=\omega_{2}$
(B) only if $\omega_{1}=\omega_{2}$ and $x_{0}=y_{0}$
(C) only if $\omega_{1} \neq \omega_{2}$ and $x_{0}=y_{0}$
(D) only if $\omega_{1}=2 \omega_{2}$

PHYSICS (Honours)

Paper Code : I-B

[New Syllabus]
Full Marks : 55
Time : Three Hours Thirty Minutes
The figures in the margin indicate full marks.
Answer five questions taking at least one from each group.

Group - A

[Mathematical Methods]

1. (a) Find the unit tangent vector to any point on the curve $x=t^{2}+1, y=4 t-3, z=2 t^{2}-6 t$. Determine the unit tangent at the point where $t=2$.
(b) If A has a constant magnitude and $\left|\frac{d \vec{A}}{d t}\right| \neq 0$, show that \vec{A} and $\frac{d \vec{A}}{d t}$ are mutually perpendicular.
(c) Discuss in few words about the geometrical interpretation of "gradient of a scalar".
(d) Show that $\vec{\nabla} \cdot\left(r^{n} \vec{r}\right)=(n+3) r^{n}$
2. (a) Verify Stoke's theorem for vector field $\vec{A}=y \hat{i}-x \hat{j}$ for a circle of radius 1 unit with centre at the origin in $x-y$ plane.
(b) Find the Fourier series for $f(x)=x$ in the closed interval $(-\pi, \pi)$.
(c) Two cards are selected at random from 10 cards, numbered 1 to 10 . If the two cards are drawn together, find the probability that the sum is odd. $4+4+3$
3. (a) Prove that the eigenvalues of a Hermitian matrix are real.
(b) If A is a non-singular matrix, show that eigenvalues of A^{-1} are reciprocals of those of A and every eigenvector of A is also an eigenvector of A^{-1}.
(c) Prove the recurrence relation: $H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x)$; where, H denotes the Hermite polynomial.
$3+4+4$

Group - B

[Mechanics]

4. (a) A particle is moving along a curve in a plane. Using plane polar co-ordinate (r, θ) derive the expression for radial and transverse component of velocity and acceleration.
(b) The polar co-ordinates of a point are $(r, \theta, \phi)=\left(8,30^{\circ}, 45^{\circ}\right)$. Find the Cartesian co-ordinates of that point.
5. (a) Establish the differential equation of motion of a particle under a central force system.
(b) If a planet suddenly stopped moving along its circular orbit, show that it would fall into the sun at a time which is $\frac{\sqrt{2}}{8}$ times its time period. $7+4$
6. (a) Derive the expression for Coriolis force due to earth's rotation.
(b) Calculate the magnitude and direction of Coriolis acceleration of a rocket moving vertically upward with a velocity of $\frac{2}{\sqrt{3}} \mathrm{~km} / \mathrm{s}$ at $30^{\circ} \mathrm{S}$ latitude.

Group - C

[General Properties of Matter]

7. (a) Show that for a homogeneous isotropic medium $Y=2 \eta(1+\sigma)$; where the symbols have their usual meaning.
(b) Show that when a solid cylinder is twisted, the torsional couple per unit angular twist is $\frac{\pi \eta r^{4}}{2 l}$, where the symbols are of usual meaning. What will be the form of couple if we consider a hollow cylinder?
8. (a) Derive an expression for the excess pressure acting inside a curved liquid membrane.
(b) What do you mean by streamline flow of a liquid?
(c) In the Poiseuille's experiment the following observations were made: volume of water collected in 5 minutes $=50$ c.c.; head of water $=0.5 \mathrm{~m}$; length of capillary tube $=0.602 \mathrm{~m}$ and radius of capillary tube $=0.52 \times 10^{-3} \mathrm{~m}$. Calculate the co-efficient of viscosity of water. $5+2+4$
