P-II (1+1+1) H/20 (N)

2020

PHYSICS (Honours)

Paper Code : V - A & B

[New Syllabus]

Important Instructions for Multiple Choice Question (MCQ)

• Write Subject Name and Code, Registration number, Session and Roll number in the space provided on the Answer Script.

Example : Such as for Paper III-A (MCQ) and III-B (Descriptive).

Subject Code : III A & B

Subject Name :

• Candidates are required to attempt all questions (MCQ). Below each question, four alternatives are given [i.e. (A), (B), (C), (D)]. Only one of these alternatives is 'CORRECT' answer. The candidate has to write the Correct Alternative [i.e. (A)/(B)/(C)/(D)] against each Question No. in the Answer Script.

```
Example — If alternative A of 1 is correct, then write : 1. - A
```

• There is no negative marking for wrong answer.

মাল্টিপল চয়েস প্রশ্নের (MCQ) জন্য জরুরী নির্দেশাবলী
 উত্তরপত্রে নির্দেশিত স্থানে বিষয়ের (Subject) নাম এবং কোড, রেজিস্ট্রেশন নম্বর, সেশন এবং রোল নম্বর লিখতে হবে।
উদাহরণ — যেমন Paper III-A (MCQ) এবং III-B (Descriptive)।
Subject Code : III A & B
Subject Name :
• পরীক্ষার্থীদের সবগুলি প্রশ্নের (MCQ) উত্তর দিতে হবে। প্রতিটি প্রশ্নে চারটি করে সম্ভাব্য উত্তর, যথাক্রমে (A), (B), (C) এবং (D) করে দেওয়া আছে। পরীক্ষার্থীকে তার উত্তরের স্বপক্ষে (A) / (B) / (C) / (D) সঠিক বিকল্পটিকে প্রশ্ন নম্বর উল্লেখসহ উত্তরপত্রে লিখতে হবে।
উদাহরণ — যদি 1 নম্বর প্রশ্নের সঠিক উত্তর A হয় তবে লিখতে হবে :
1 A
 ভুল উত্তরের জন্য কোন নেগেটিভ মার্কিং নেই।

Page: 2 of 8

Paper Code : V - A

Full Marks: 15

Time : Thirty Minutes

Answer *all* the Questions. Choose the Correct Answer. Each Question Carries 1.5 Marks.

- 1. The slopes of isothermal and adiabatic curves for an ideal gas are related as ---
 - (A) Isothermal slope = adiabatic slope
 - (B) Isothermal slope = $\gamma \times$ adiabatic slope
 - (C) adiabatic slope = $\gamma \times$ Isothermal slope
 - (D) none of the above is true
- 2. The efficiency of a Carnot engine is 100%. The temperature of the sink must be
 - (A) 0 K
 - (B) 273 K
 - (C) 0°C
 - (D) None of the above
- 3. Volume of a gas expands isothermally to 4 times its initial volume. The change in entropy in terms of gas constants R is
 - (A) $R \ln 2$
 - (B) $R \ln 4$
 - (C) 2R ln 2
 - (D) Both (B) and (C)

Page: 3 of 8

- 4. The expression $\left(\frac{\partial P}{\partial V}\right)_T \left(\frac{\partial T}{\partial P}\right)_S \left(\frac{\partial S}{\partial T}\right)_P$ is equivalent to
 - (A) $\left(\frac{\partial S}{\partial V}\right)_T$
 - (B) $\left(\frac{\partial P}{\partial T}\right)_V$
 - (C) $\left(\frac{\partial V}{\partial T}\right)_{S}$
 - (D) $-\left(\frac{\partial P}{\partial V}\right)_V$
- 5. The first law of thermodynamics is a restatement of the law of conservation of
 - (A) Mass
 - (B) Momentum
 - (C) Energy
 - (D) None of the above
- 6. Magnetic flux has the dimensions ----
 - (A) $[ML^{2}T^{-2}I^{-1}]$
 - (B) $[ML^2T^{-1}I^{-1}]$
 - (C) $[MLT ^2I]$
 - (D) $[ML^2T^2]$

Page: 4 of 8

- 7. Lenz's law is a consequence of the law of conservation of ---
 - (A) Charge
 - (B) Energy
 - (C) Momentum
 - (D) Mass
- 8. The differential form of Faraday's law of electromagnetic induction is ----
 - (A) $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
 - (B) $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$

(C)
$$\vec{\nabla} \times \vec{B} = -\frac{\partial \vec{E}}{\partial t}$$

(D)
$$\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

9. Time constant of a CR circuit is —

(A)
$$\frac{1}{CR}$$

(B) $\frac{R}{C}$
(C) CR
(D) C/R

10. The average value of the sinusoidal voltage, $v = V_0 \sin wt$ over a complete cycle is —

(A)
$$\frac{2V_0}{\pi}$$

(B) $\frac{V_0}{2}$
(C) $\frac{V_0}{\pi}$
(D) zero

2020

PHYSICS (Honours)

Paper Code : V - B

[New Syllabus]

Full Marks : 55

Time : Three Hours Thirty Minutes

The figures in the margin indicate full marks.

Answer *five* questions taking at least *one* from each group.

Group - A

[Thermodynamics]

- 1. (a) State and prove the Carnot's theorem. What is its significance?
 - (b) Assuming the temperature to be a thermodynamic coordinate of the system, show how Kelvin derived a scale of temperature independent of the properties of the measuring system. Explain the relation between ideal gas scale and Kelvin scale of temperature. 5+6
- 2. Derive Maxwell's thermodynamic relations and hence prove the relation

$$C_P - C_V = T \left(\frac{\partial P}{\partial T}\right)_V \left(\frac{\partial V}{\partial T}\right)_P$$

Show that for a van dar Waals' gas
$$C_P - C_V = \frac{R\left(P + \frac{a}{V^2}\right)}{P - \frac{a}{V^2} + \frac{2ab}{V^3}}$$
. 5+2.5+3.5

- 3. (a) What is meant by 1st order phase transition? Establish the Clapeyron equation for system which can have first order phase transition.
 - (b) Calculate the efficiency of Otto cycle. (2+4)+5

Page: 7 of 8

Explain the principle of cooling of a paramagnetic substance by adiabatic demagnetisation. Obtain an expression for the amount of cooling. What is the lowest temperature produced by this method?

Group - B

[Electricity - II]

- 5. (a) State and explain Biot-Savart law. Apply the law to find magnetic field due to a long straight current carrying conductor.
 - (b) Self-inductances of two coils are L_1 and L_2 , respectively and their mutual inductance is *M*. Show that in general $M^2 \le L_1 L_2$. Define coefficient of coupling of two circuits. (3+4)+4
- 6. Describe the construction and working principle of a suspended coil ballistic galvanometer. Explain the meaning of critical damping. 9+2
- 7. (a) A dc source of voltage V is suddenly applied to a circuit consisting of a resistor R and an inductor L in series. Write down the instantaneous e-mf equation and hence, find the instantaneous current. Calculate the maximum energy stored in the inductor.
 - (b) A sinusoidal voltage, $v = V_0 \cos \omega t$ is applied to series LCR circuit. Find an expression for instantaneous current in circuit. 6+5
- 8. (a) Draw the circuit diagram of Anderson Bridge. Find the conditions of balance for the bridge.
 - (b) A thermocouple is comprised by two metals X and Y. Prove that

$$\pi = T \frac{dE}{dT}$$
 and $\sigma_x - \sigma_y = -T \frac{d^2 E}{dT^2}$ 6+5

Page: 8 of 8